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Abstract

These notes are largely based on the last 3 weeks of Math 6720: Applied Complex Variables
and Asymptotic Methods course, taught by Christel Hohenegger in Spring 2017 and Alexander
Balk in Spring 2016, at the University of Utah. Additional examples/remarks/results from other
sources are added as I see fit, purely for my own understanding. These notes are by no means ac-
curate or applicable, and any mistakes here are of course my own. Please report any typographical
errors or mathematical fallacy to me by email tan@math.utah.edu

Motivation

A solid understanding in the asymptotic theory of integrals has proven to be invaluable for applied
mathematician, but why integrals? The reason is that many functions that arise frequently in math-
ematics, physics and engineering are defined by (complicated) integral expressions, and in most cases
one resorts to numerical techniques to study these integrals due to the difficulty in gauging its be-
haviour. It is precisely this reason that many powerful analytical tools are developed to extract
asymptotic behaviour of these integral functions for small or large values of the parameter. We briefly
mention a few applications:

1. Integral transforms. The Fourier transform of a given function fpxq is given by

f̂pξq “

ż

Rn

fpxqe´i2πx¨ξ dx,

and one is interested in estimating asymptotically f̂pξq as ξ ÝÑ 8. For simple functions such as
e´α|x| and e´x

2
, one can use contour integration to compute their Fourier transform explicitly.

For L1 functions, Riemann-Lebesgue lemma states that f̂pξq ÝÑ 0 as |ξ| ÝÑ 8. However, these
approaches are not available for complicated functions such as bump functions.

2. Special functions. Examples of special functions in mathematical physics include:

Airy function : Aipxq “
1

π

ż 8

0
cos

ˆ

xt`
t3

3

˙

dt

Gamma function : Γpzq “

ż 8

0
tz´1e´t dt, Repzq ą 0.

Airy functions appear in optics, electromagnetism, fluid dynamics and nonlinear wave propaga-
tion.
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3. Differential equations. In special cases, one might have an integral representation for solution
of ODEs and PDEs. Long time behaviour of the system can be understand using asymptotic
expansion techniques. Consider the following initial value problem:

#

xy3pxq ` 2y “ 0,

yp0q “ 0, yp8q “ 0.

Its solution has an integral representation

ypxq “

ż 8

0
exp

ˆ

´t´
x
?
t

˙

dt.

One can show that asymptotically the solution satisfies

ypxq „

c

π

3
3
?

4x exp

ˆ

´3
´x

2

¯2{3
˙

as x ÝÑ 8.

1 Asymptotic Notation

We begin by defining asymptotic notations and asymptotic expansion. These are useful in describing
the limiting behaviour of a function when the argument gets closer to a particular complex number,
typically 0 or 8.

Definition 1.1. Let fpzq, φpzq be functions defined on Ω Ă C.

1. We say that fpzq “ Opφpzqq as z ÝÑ z0 if there exists a constant C ą 0 and a neighbourhood
U of z0 such that

|fpzq| ď C|φpzq| for all z P ΩX U.

i.e.

ˇ

ˇ

ˇ

ˇ

fpzq

φpzq

ˇ

ˇ

ˇ

ˇ

is bounded locally around z0.

2. We say that fpzq “ opφpzqq as z ÝÑ z0 if

lim
zÑz0

fpzq

φpzq
“ 0.

3. A sequence of gauge functions tφnu
8
n“0 is an asymptotic sequence as z ÝÑ z0 if

φn`1pzq “ opφnpzqq as z ÝÑ z0 for every n “ 0, 1, . . . .

4. The function fpzq is said to have an asymptotic representation (expansion)

fpzq „ fN pzq “
N
ÿ

n“0

anφnpzq as z ÝÑ z0,

if for every N “ 0, 1, 2, . . ., we have

fpzq ´ fN pzq “ opφN pzqq as z ÝÑ z0.

In other words, asymptotic representation of a function describes its asymptotic behaviour in
terms of asymptotic sequence.
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Remark 1.2.

1. Intuitively, an asymptotic expansion of a given function f is a finite sum which might diverges,
yet it still provides an increasingly accurate description of the asymptotic behaviour of f . There
is a caveat here: for a divergent asymptotic expansion, for some z, there exists an optimal
N0 “ N0pzq that gives best approximation to f , i.e. adding more terms actually gives worse
accuracy.

2. However, for values of z sufficiently close to the limiting value z0, the optimal number of terms
required increases, i.e. for every ε ą 0, there exists an δ and an optimal N0 “ N0pδq such that

ˇ

ˇ

ˇ

ˇ

ˇ

fpzq ´
N
ÿ

k“0

akφkpzq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε for every |z ´ z0| ă δ and N ą N0.

3. One should think of fN pzq as converging for fixed N in the limit as z ÝÑ z0. Observe that the
definition of asymptotic expansion implies that the remainder term is “small” compared to the
last term φN pzq of fN pzq.

Example 1.3. The functions φkpxq “ xk form an asymptotic sequence as x ÝÑ 0` and in this
case the asymptotic representation is often called an asymptotic power series. The functions
φkpxq “ x´k form an asymptotic sequence as x ÝÑ 8.

Proposition 1.4. Consider finding the leading asymptotic behaviour of the integral

Ipxq “

ż b

a
fpx, tq dt as x ÝÑ x0.

If fpx, tq „ f0ptq as x ÝÑ x0 uniformly for t P ra, bs, i.e.

lim
xÑx0

fpx, tq ´ f0ptq

f0ptq
“ 0 uniformly in t,

then the leading behaviour of Ipxq as x ÝÑ x0 is

Ipxq “

ż b

a
fpx, tq dt „

ż b

a
f0ptq dt as x ÝÑ x0,

provided that the integral on the RHS is finite and nonzero.

Example 1.5. For instance, to determine the leading behaviour of the integral

Ipxq “

ż 2

0
cos

`

xt2 ` x2t
˘1{3

dt as x ÝÑ 0,

we simply set x “ 0 and obtain

Ipxq „

ż 2

0
cosp0q dt “ 2 as x ÝÑ 0.
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2 Series Expansions and Integration By Parts

Broadly speaking, there are two ways of approximating a function:

1. A convergent expansion, or

2. A divergent asymptotic expansion.

A convergent expansion can be easily obtained by integrating term by term the power series represen-
tation of the integrand, while a divergent expansion is usually constructed using integration by parts.
Depending on the limiting value, one is more favourable than the other.

Recall the Gamma function

Γpzq “

ż 8

0
tz´1e´t dt, Repzq ą 0.

One can show using integration by parts that the Gamma function satisfies the functional equation

zΓpzq “ Γpz ` 1q,

which can be used to uniquely extend Γpzq to a meromorphic function on C, with simple poles at the
non-positive integers z “ . . . ,´2,´1, 0. We note that:

Γ

ˆ

1

2

˙

“

ż 8

0

e´t
?
t
dt “ 2

ż

08
e´u

2
du “

?
π.

For notational convenience, define the following function:

γpz, xq “

ż x

0
tz´1e´t dt (Lower incomplete Gamma function)

Γpz, xq “

ż 8

x
tz´1e´t dt (Upper incomplete Gamma function)

Lemma 2.1. For any n ě 3,
ż 8

0
e´t

n
dt “ Γ

ˆ

n` 1

n

˙

,

where Γp¨q is the Gamma function.

Proof. We make a change of variable u “ tn, then du “ ntn´1dt “ nun´1{ndt. The integral becomes:

ż 8

0
e´t

n
dt “

ż 8

0
e´u

ˆ

du

nun´1{n

˙

“
1

n

ż 8

0
u´pn´1q{ne´u dt

“
1

n
Γ

ˆ

1

n

˙

“ Γ

ˆ

n` 1

n

˙

.

�

Example 2.2. Consider approximating the error function

Erfpxq “
2
?
π

ż x

0
e´t

2
dt as x ÝÑ 8.
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1. Convergent expansion

The Taylor series of the integrand e´t
2

around x “ 0 is

e´t
2
“ 1´ t2 `

t4

2!
´
t6

3!
` . . . ,

and it converges everywhere because it has no singularity as a function of complex variable.
Integrating the Taylor series term by term, we obtain:

Erfpxq “
2
?
π

„

x´
x3

3
`
x5

10
´
x7

42
` . . .



,

and this power series converges everywhere. However, the convergence is slow for large values
of x and it doesn’t capture the asymptotic behaviour of Erfpxq as x ÝÑ 8.

2. Divergent expansion
We first rewrite the error function as follows:

Erfpxq “
2
?
π

ˆ
ż 8

0
e´t

2
dt´

ż 8

x
e´t

2
dt

˙

“ 1´
2
?
π

ż 8

x
e´t

2
dt,

Observe that the integrand is almost negligible if t ąą x, so it contributes most to the integral
when t is close to x. Using the identity

e´t
2
“ ´

1

2t

d

dt

”

e´t
2
ı

and integration by parts, we obtain for every n ě 0:

Gpnq :“

ż 8

x

e´t
2

tn
dt “

ż 8

x

ˆ

´
1

2tn`1

˙ˆ

d

dt
re´t

2
s

˙

dt

“ ´
e´t

2

2tn`1

ˇ

ˇ

ˇ

ˇ

8

x

´

ż 8

x

pn` 1qe´t
2

2tn`2
dt

“
e´x

2

2xn`1
´

ˆ

n` 1

2

˙

Gpn` 2q

“
1

2

˜

e´x
2

xn`1
´ pn` 1qGpn` 2q

¸

Thus,

ż 8

x
e´t

2
dt “ Gp0q “

e´x
2

2x
´

1

2
Gp2q

“
e´x

2

2x
´

e´x
2

2p2x3q
`

ˆ

1

2

˙ˆ

3

2

˙

Gp4q

“
e´x

2

2x
´
e´x

2

22x3
`
p1qp3qe´x

2

23x5
´
p1qp3qp5q

23
Gp6q

Repeating this procedure using the recurrence relation for Gpnq, we finally obtain:

Erfpxq “ 1´
2e´x

2

?
π

„

1

2x
´

1

4x3
`

1 ¨ 3

8x5
´

1 ¨ 3 ¨ 5

16x7
` . . .



“ 1´
2e´x

2

?
π

N
ÿ

n“0

p´1qn
p2n´ 1q!!

2n`1
1

x2n`1
`RN`1pxq
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“ 1´
e´x

2

?
π

N
ÿ

n“0

p´1qn
p2n´ 1q!!

2n
1

x2n`1
`RN`1pxq,

where p2n´ 1q!! “ p2n´ 1qp2n´ 3q . . . p3qp1q and RN pxq is the remainder term, having the form

RN`1pxq “
p´1qN`1
?
π

p2N ` 1q!!

2N`1
Gp2pN ` 1qq.

Clearly, the series diverges for any large x. For the asymptotic sequence

φnpxq “
e´x

2

x2n`1
as x ÝÑ 8,

for a fixed N we have that

|RN`1pxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

C

ż 8

x

e´t
2

t2N`2
dt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

C

ż 8

x

ˆ

´
1

2t2N`3

˙ˆ

d

dt
re´t

2
s

˙

dt

ˇ

ˇ

ˇ

ˇ

À C
e´x

2

x2N`3

“
CφN pxq

x2
,

where C is a constant depending only on N . Hence, we show that

Erfpxq „ 1´
e´x

2

?
π

N
ÿ

n“0

p´1qn
p2n´ 1q!!

2n
1

x2n`1
as x ÝÑ 8.

To conclude, we present a table with number of terms required for both convergent and divergent
expansion to approximate Erfpxq within 10´5, for different values of x. It clearly suggests that the
divergent expansion is a better approximation compare to the convergent expansion.

Convergent expansion Divergent expansion

Range x ă 1 x ă 2 x ă 3 x ă 5 x ą 3 x ą 2.5

# of terms 8 16 31 75 2 3

Example 2.3. Consider approximating the exponential integral:

E1pxq “

ż 8

x

e´t

t
dt as x ÝÑ 8.

Using integration by parts,

E1pxq “

ż 8

x

e´t

t
dt “ ´

e´t

t

ˇ

ˇ

ˇ

ˇ

8

x

´

ż 8

x

e´t

t2
dt “

e´x

x
´

ż 8

x

e´t

t2
dt

“
e´x

x
`
e´t

t2

ˇ

ˇ

ˇ

ˇ

8

x

` 2

ż 8

x

e´t

t3
dt “

e´x

x
´
e´x

x2
` 2

ż 8

x

e´t

t3
dt

“
...

...
...

...
...

...
...

...
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“ e´x
N
ÿ

n“1

p´1qn`1
pn´ 1q!

xn
` p´1qNN !

ż 8

x

e´t

tN`1
dt

loooooooooooomoooooooooooon

RN pxq

For the asymptotic sequence

φnpxq “
e´x

xn
, as x ÝÑ 8,

We claim that the first sum is an asymptotic expansion of E1pxq as x ÝÑ 8, with respect to the
asymptotic sequence φkpxq “ e´x{xk. A coarse estimate on the remainder gives:

|RN pxq| ď
N !

xN`1

ż 8

x
e´t dt “

N !e´x

xN`1
“
N !

x
φN pxq.

Hence,

E1pxq „ e´x
N
ÿ

k“1

p´1qk`1pk ´ 1q!

kn
“

N
ÿ

k“1

akφkpxq as x ÝÑ 8.

Note that the asymptotic expansion diverges as N ÝÑ 8 for a fixed x.

We next approximate E1pxq as x ÝÑ 0`. Differentiating E1pxq using Leibniz rule gives:

dE1

dx
“ ´

e´x

x
“ ´

1

x

ˆ

1´ x`
x2

2!
´
x3

3!
` . . .

˙

.

Integrating term by term, we obtain

E1pxq „ C ´ lnx` x´
x2

4
` . . . .

To find C, we take the limit as x ÝÑ 0`:

C “ lim
xÑ0`

„
ż 8

x

e´t

t
dt` lnx



“ ´γ « 0.57772.

Note that

´γ “ Γ1p1q “ lim
zÑ0`

„

Γz ´
1

z



“ ´ lim
nÑ8

˜

´ lnn`
n
ÿ

k“1

1

k

¸

.

Example 2.4. Consider approximating the integral

Ipxq “

ż x

0
t´1{2e´t dt “ γ

ˆ

1

2
, x

˙

as x ÝÑ `8.

The Taylor series of the integrand t´1{2e´t around t “ 0 is

t´1{2e´t
2
“ t´1{2 ´ t1{2 `

1

2
t3{2 ´

1

6
t5{2 ` . . . ,

and it converges for all t ‰ 0. Integrating this term by term gives:

ż x

0
t´1{2e´t dt “ 2x1{2 ´

2

3
x3{2 `

1

5
x5{2 ´

1

21
x7{2 ` . . . ,
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and it doesn’t capture the asymptotic behaviour of γ
`

1
2 , x

˘

as x ÝÑ 8. On the other hand, a direct
integration by parts gives:

ż x

0
t´1{2e´t dt “ ´t´1{2e´t

ˇ

ˇ

ˇ

ˇ

x

0

´
1

2

ż x

0
t´3{2e´t dt,

which diverges upon evaluating the boundary term at t “ 0.

To find an expansion that is useful for large x, we rewrite γ
`

1
2 , x

˘

as follows:

γ

ˆ

1

2
, x

˙

“ Γ

ˆ

1

2

˙

´ Γ

ˆ

1

2
, x

˙

“
?
π ´

ż 8

x
t´1{2e´t dt.

Using integration by parts,

γ

ˆ

1

2
, x

˙

“ ´t´1{2e´t
ˇ

ˇ

ˇ

ˇ

8

x

´
1

2

ż 8

x
t´3{2e´t dt

“ x´1{2e´x ´
1

2

ż 8

x
t´3{2e´t dt

“ x´1{2e´x `
1

2

”

t´3{2e´t
ı

ˇ

ˇ

ˇ

ˇ

8

x

`
1 ¨ 3

22

ż 8

x
t´5{2e´t dt

“ x´1{2e´x ´
x´3{2e´x

2
`

1 ¨ 3

22

ż 8

x
t´5{2e´t dt

“
...

...
...

...
...

...
...

...

“
e´x
?
x

”

1`
N
ÿ

n“1

p´1qn
p2n´ 1q!!

p2xqn

ı

` p´1qN`1
p2N ` 1q!!

2N`1

ż 8

x
t´p2N`3q{2e´t dt

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

RN`1pxq

,

For the asymptotic sequence

φnpxq “
e´x

xnx1{2
as x ÝÑ 8,

for a fixed N we have that

|RN`1pxq| “ C

ż 8

x
t´p2N`3q{2e´t dt ď

C

x´p2N`3q{2

ż 8

x
e´t dt

“ C

ˆ

e´x

xp2N`3q{2

˙

“ C

ˆ

φN pxq

x

˙

,

where C is a constant depending only on N . Consequently,

Γ

ˆ

1

2
, x

˙

„
?
π ´

e´x
?
x

”

1`
N
ÿ

n“1

p´1qN
p2N ´ 1q!!

p2xqN

ı

as x ÝÑ 8.
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Example 2.5. Consider approximating the integral

Ipxq “

ż 8

x
e´t

4
dt as x ÝÑ 0` and as x ÝÑ 8.

For the first limit x ÝÑ 0`, term-by-term integration of the convergent Taylor series

e´t
4
“ 1´ t4 `

t8

2
´
t12

3
` . . . ,

gives a divergent result. In order to make use of this convergent power series, we rewrite Ipxq to
“remove” the upper bound. From Lemma 2.1, we obtain:

Ipxq “

ż 8

0
e´t

4
dt´

ż x

0
e´t

4
dt “ Γ

ˆ

5

4

˙

´

ż x

0
e´t

4
dt

“ Γ

ˆ

5

4

˙

´

ż x

0

ˆ

1´ t4 `
t8

2
´
t12

3
` . . .

˙

“ Γ

ˆ

5

4

˙

´

ˆ

x´
x5

5
`
x9

18
´
x13

36
` . . .

˙

“ Γ

ˆ

5

4

˙

´

N
ÿ

n“0

p´1qn
x4n`1

p4n` 1qn!
`RN`1pxq,

where RN`1pxq “ opφN pxqq as x ÝÑ 0` for the asymptotic sequence φnpxq “ x4n`1. As a result, the
leading behavior of Ipxq as x ÝÑ 0` is

ż 8

x
e´t

4
dt „ Γ

ˆ

5

4

˙

´ x as x ÝÑ 0`.

Unfortunately, this power series converges slowly for large x. For large values of x, integrating by
parts gives:

ż 8

x
e´t

4
dt “

ż 8

x

ˆ

´
1

4t3

˙ˆ

d

dt
re´t

4
s

˙

dt

“ ´
e´t

4

4t3

ˇ

ˇ

ˇ

ˇ

8

x

´
3

4

ż 8

x

e´t
4

t4
dt

“
e´x

4

4x3
´

3

4

ż 8

x

e´t
4

t4
dt

One can show that
ż 8

x
e´t

4
dt „

e´x
4

4x3
as x ÝÑ 8.

Example 2.6. Consider the integral
ż 8

0
e´xt

2
dt,

which has exact value
1

2

c

π

x
. Integrating by parts gives:

ż 8

0
e´xt

2
dt “

ż 8

0
´

ˆ

1

2xt

˙ˆ

d

dt
re´xt

2
s

˙

dt



10 3 LAPLACE’S METHOD

“ ´
e´xt

2

2xt

ˇ

ˇ

ˇ

ˇ

8

0

´

ż 8

0

e´xt
2

2xt2
dt,

and the boundary term diverges at t “ 0. It appears that the problem originates from the limits of
integration, in which the parameter x appears there.

3 Laplace’s Method

Consider the Laplace integral which has the form

Ipxq “

ż b

a
fptqexφptq dt. (3.1)

where we assume that f, φ are real functions. Note that (3.1) corresponds to the Laplace transform if
φptq “ ´t. To investigate the asymptotic behaviour of Ipxq as x ÝÑ 8, we try integrating by parts:

Ipxq “

ż b

a

ˆ

fptq

xφ1ptq

˙ˆ

d

dt
rexφptqs

˙

“
fptqexφptq

xφ1ptq

ˇ

ˇ

ˇ

ˇ

b

a

´

ż b

a

exφptq

x

d

dt

ˆ

fptq

φptq

˙

dt
looooooooooooomooooooooooooon

Rpxq

If Rpxq is asymptotically smaller than the boundary term as x ÝÑ 8, then we have

Ipxq „
fptqexφptq

xφ1ptq

ˇ

ˇ

ˇ

ˇ

b

a

as x ÝÑ 8. (3.2)

In general, (3.2) is satisfied if f P Cra, bs, φ P C1ra, bs and one of the following three conditions holds:

1. φ1ptq ‰ 0 on ra, bs and at least one of fpaq, fpbq are not zero. These conditions are
sufficient to ensure that Rpxq exists, and one can show that it becomes negligible compared
with the boundary term as x ÝÑ 8.

2. φptq ă φpbq on ra, bq and fpbq, φ1pbq ‰ 0. In this case, Rpxq fails to exist but these conditions
are strong enough to ensure that

Ipxq „
fpbqexφpbq

xφ1pbq
as x ÝÑ 8.

3. φptq ă φpaq on ra, bs and fpaq, φ1paq ‰ 0. In this case, Rpxq fails to exist but these conditions
are strong enough to ensure that

Ipxq „ ´
fpaqexφpaq

xφ1paq
as x ÝÑ 8.

Remark 3.1. A different definition for asymptotic expansion is used in Orszag’s book. We say that
fpzq „ gpzq z ÝÑ z0 if

lim
zÑz0

fpzq ´ gpzq

gpzq
“ 0.

This is equivalent to saying

lim
zÑz0

fpzq

gpzq
“ 1 ðñ lim

zÑz0

gpzq

fpzq
“ 1 ðñ gpzq „ fpzq as z Ñ z0.
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If we write fpzq as

fpzq “ gpzq ` rfpzq ´ gpzqs,

fpzq „ gpzq as z ÝÑ z0 means that the difference fpzq´gpzq is small compared with gpzq as z ÝÑ z0.
The difference fpzq ´ gpzq is said to be subdominant as compared with fpzq or gpzq which are
dominant. [Refer to Stokes phenomenon and Example 11, page 116]

Remark 3.2. Assume t, x P R in (3.1). If fptq “ fReptq ` ifImptq, then we look at the real and
imaginary parts of the integral separately. If φptq “ φReptq ` iφImptq, then we rewrite the Laplace
integral as:

Ipxq “

ż b

a
fptqeixφImptq
loooooomoooooon

gpx,tq

exφReptq dt,

where gpx, tq : R2 ÝÑ C.

Laplace’s method is a general technique for obtaining the asymptotic behaviour as x ÝÑ `8 of
integrals in which the parameter x appears in an exponential. It is based on the following important
observation: if the real continuous function φptq attains its maximum at c P ra, bs and fpcq ‰ 0, then
only the immediate neighbourhood of t “ c that contributes to the full asymptotic expansion of Ipxq
for large x. That is, we may approximate the integral Ipxq by Ipx; εq, where

Ipx; εq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ż c`ε

c´ε
fptqexφptq dt if a ă c ă b,

ż a`ε

a
fptqexφptq dt if c “ a,

ż b

b´ε
fptqexφptq dt if c “ b.

Example 3.3. We use Laplace’s method to investigate the asymptotic behaviour of

Ipxq “

ż 10

0

e´xt

1` t
dt as x ÝÑ 8.

Since φptq “ ´t has a maximum at t “ 0 over the interval r0, 10s, we may replace Ipxq by

Ipx; εq “

ż ε

0

e´xt

1` t
dt.

Next, we choose ε ą 0 sufficiently small such that p1 ` tq´1 „ 1, the first term in its Taylor series
about t “ 0. We then have:

Ipxq „ Ipx; εq „

ż ε

0
e´xt dt “

e´xt

´x

ˇ

ˇ

ˇ

ˇ

ε

0

“
1´ e´εx

x
as x ÝÑ 8.

Since e´εx ! 1 as x ÝÑ 8 for any ε ą 0, the leading behaviour of Ipxq as x ÝÑ 8 is

Ipxq „
1

x
as x ÝÑ 8.



12 3 LAPLACE’S METHOD

Laplace’s method also gives the full asymptotic expansion of Ipxq. For sufficiently small ε ą 0, writing
p1` tq´1 as a geometric series

1

1` t
“

8
ÿ

n“0

p´1qntn, |t| ă 1,

we obtain:

Ipx; εq “

ż ε

0

e´xt

1` t
dt “

8
ÿ

n“0

p´1qn
ż ε

0
tne´xt dt

“

8
ÿ

n“0

p´1qn
ˆ
ż 8

0
tne´xt dt´

ż 8

ε
tne´xt dt

˙

The first integral is just the Gamma function:
ż 8

0
tne´xt dt “

1

xn`1

ż 8

0
sne´s ds “

Γpn` 1q

xn`1
“

n!

xn`1
,

where we make a change of variable s “ xt. The second integral is subdominant compared with the
first integral as x ÝÑ 8:

ż 8

ε
tne´xt dt “

tne´xt

x

ˇ

ˇ

ˇ

ˇ

8

ε

`

ż 8

ε

ntn`1e´xt

x
dt „

εne´εx

x
as x ÝÑ 8,

and this is exponentially smaller than the first integral as x ÝÑ 8. Hence, the full asymptotic
expansion of Ipxq as x ÝÑ 8 is

Ipxq „
8
ÿ

n“0

p´1qn
n!

xn`1
as x ÝÑ 8.

Recall that the Laplace transform of a given function fptq is

Lpfqpxq “
ż 8

0
fptqe´xt dt,

and one tries to understand the asymptotic behaviour of Lpfqpxq for large x. Observe that for large x,
e´xt is sufficiently small except near t “ 0, i.e. for sufficiently nice functions fptq, the main contribu-
tion to Lpfqpxq occurs near t “ 0. This suggests that we could determine the asymptotic behaviour of
Lpfqpxq by approximate fptq with finitely many terms of its Taylor series around t “ 0. The rigorous
statement of this intuition is called Watson’s lemma, which is a powerful tool that allows one to
explicitly write down an asymptotic expansion of Laplace integrals with only the knowledge of the
local behaviour of the integrand.

Theorem 3.4 (Watson’s Lemma (Real version)). Consider integrals of the form

Ipxq “

ż b

0
fptqe´xt dt, b ą 0, b ‰ 8. (3.3)

Assume that fptq P Cr0, bs and fptq has the asymptotic expansion

fptq „ tα
8
ÿ

n“0

ant
βn as t ÝÑ 0`, (3.4)

with α ą ´1 and β ą 0 so that the integral converges at t “ 0. Then

Ipxq „
8
ÿ

n“0

an
Γpα` βn` 1q

xα`βn`1
as x ÝÑ 8. (3.5)
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Proof. We first split Ipxq as follows:

Ipxq “

ż ε

0
fptqe´xt dt

looooooomooooooon

Ipx;εq

`

ż b

ε
fptqe´xt dt,

for some ε ą 0. The second integral introduces exponentially small errors for any ε ą 0:
ˇ

ˇ

ˇ

ˇ

ż b

ε
fptqe´xt dt

ˇ

ˇ

ˇ

ˇ

ď }f}8

ż b

ε
e´xt dt “ }f}8

ˆ

e´εx ´ e´bx

x

˙

,

which converges to 0 exponentially for x ÝÑ 8. Next, we substitute the asymptotic expansion (3.4)
into Ipx; εq to obtain:

Ipx; εq “
N
ÿ

n“0

ż ε

0
ant

α`βne´xt dt`

˜

Ipx; εq ´
N
ÿ

n“0

ż ε

0
ant

α`βne´xt dt

¸

.

In particular, we can choose ε sufficiently small such that
ˇ

ˇ

ˇ

ˇ

ˇ

fptq ´ tα
N
ÿ

n“0

ant
βn

ˇ

ˇ

ˇ

ˇ

ˇ

ď KtαtβpN`1q for every t P r0, εs,

for some constant K ą 0. Thus,
ˇ

ˇ

ˇ

ˇ

ˇ

Ipx; εq ´
N
ÿ

n“0

ż ε

0
ant

α`βne´xt dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż ε

0

ˇ

ˇ

ˇ

ˇ

ˇ

fptq ´ tα
N
ÿ

n“0

ant
βn

ˇ

ˇ

ˇ

ˇ

ˇ

e´xt dt

ď K

ż ε

0
tα`βpN`1qe´xt dt

ď K

ż 8

0
tα`βpN`1qe´xt dt

“
K

xα`βpN`1q`1

ż 8

0
sα`βpN`1qe´s ds

“ K

ˆ

Γpα` βpN ` 1q ` 1q

xα`βpN`1q`1

˙

“ O
ˆ

1

xα`βpN`1q`1

˙

as x ÝÑ 8.

Finally,
ż ε

0
ant

α`βne´xt dt “

ż 8

0
ant

α`βne´xt dt´

ż 8

ε
ant

α`βne´xt dt

“
an

xα`βn`1

ż 8

0
sα`βne´s ds` Ope´εxq

looomooon

as xÝÑ8

”

Let s “ xt.
ı

“
anΓpα` βn` 1q

xα`βn`1
` Ope´εxq
looomooon

as xÝÑ8

Combining all the estimates leads to

Ipxq ´
N
ÿ

n“0

an
Γpα` βn` 1q

xα`βn`1
„ O

ˆ

1

xα`βpN`1q`1

˙

“ o

ˆ

1

xα`βpN`1q

˙

as x ÝÑ 8.

The desired result follows since N was arbitrary in the asymptotic representation.
�
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Remark 3.5. In the case where b “ 8, a far field decay condition is needed to ensure that the
integral (3.3) converges, i.e. there exists a constant C ą 0 such that fptq ! eCt as t ÝÑ 8.

Theorem 3.6 (Watson’s Lemma (Complex version)). Suppose fptq is analytic in the sector in the
complex plane 0 ă |t| ă R, |argptq| ă δ ă π (with a possible branch point at the origin) and suppose

fptq “
8
ÿ

n“1

ant
n
N
´1 for |t| ă R, (3.6)

and
|fptq| ď Kebt for R ď t ď T. (3.7)

for some K, b independent of t. Then in the sector |argpzq| ď δ ă
π

2
we have

Ipzq “

ż T

0
fptqe´zt dt „

8
ÿ

n“1

anΓ
´ n

N

¯

z´n{N as |z| ÝÑ 8. (3.8)

Proof. Let z “ x` iy. Similar to the real version, we split Ipzq into two parts:

Ipzq “

ż R

0
fptqe´zt dt`

ż T

R
fptqe´zt dt “ I1pzq ` I2pzq,

and estimate each term. We first estimate I2pzq using (3.7):

|I2pzq| ď

ż T

R
|fptq|e´xt dt ď K

ż T

R
epb´xqt dt

“ K
epb´xqT ´ epb´xqR

b´ x

“ Ope´xRq as x ÝÑ 8.

Since the power series of fptq is convergent on the real axis,

fptq “
M´1
ÿ

n“1

ant
n
N
´1 `RM ptq,

where the remainder term satisfies

RM ptq ď Ct
M
N
´1 for all 0 ă |t| ď R.

Thus,

I1pzq “

ż R

0

˜

M´1
ÿ

n“1

ant
n
N
´1

¸

e´zt dt`

ż R

0
RM ptqe

´zt dt

“

M´1
ÿ

n“1

an

ˆ
ż 8

0
t

n
N
´1e´zt dt

˙

loooooooooooooooomoooooooooooooooon

J1pzq

´

M´1
ÿ

n“1

an

ˆ
ż 8

R
t

n
N
´1e´zt dt

˙

loooooooooooooooomoooooooooooooooon

J2pzq

`

ż R

0
RM ptqe

´zt dt

We can compute J1pzq and J2pzq by making a change of variable s “ zt:

J1pzq “
M´1
ÿ

n“1

an

zn{N

ż 8

0
s

n
N
´1e´s dt “

M´1
ÿ

n“1

an

zn{N
Γ
´ n

N

¯
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J2pzq “
M´1
ÿ

n“1

an

zn{N

ż 8

zR
s

n
N
´1e´s dt “

M´1
ÿ

n“1

an

zn{N
Γ
´ n

N
, zR

¯

,

and the incomplete Gamma function satisfies Γ
´ n

N
, zR

¯

“ Ope´xRq as x ÝÑ 8. Finally,

ˇ

ˇ

ˇ

ˇ

ż R

0
RM ptqe

´zt dt

ˇ

ˇ

ˇ

ˇ

ď C

ż R

0
t
M
N
´1e´xt dt

ď C

ż 8

0
t
M
N
´1e´xt dt

“
C

xM{N

ż 8

0
s

M
N
´1e´s ds

“
CΓp

`

M
N

˘

xM{N

“ Opx´M{N q as x ÝÑ 8.

Combining all these estimates yields:

Ipzq “
M´1
ÿ

n“1

an

zn{N
Γ
´ n

N

¯

`Ope´xRq `Opx´M{N q `Ope´xRq

“

M´1
ÿ

n´1

an

zn{N
Γ
´ n

N

¯

`Opx´M{N q as x ÝÑ 8.

The desired result follows since M was arbitrary in the asymptotic representation.
�

Observe that Watson’s lemma only applies to Laplace integrals (3.1) with φptq “ ´t. For suffi-
ciently simple φptq, we may try a change of variable of the form s “ ´φptq and obtain:

Ipxq “

ż b

a
fptqexφptq dt “

ż ´φpbq

´φpaq
´
fptq

φ1ptq
e´xs ds “

ż ´φpbq

´φpaq
F psqe´xs ds,

where

F psq “ ´
fptq

φ1ptq
“ ´

fpφ´1p´sqq

φ1pφ´1p´sqq
.

Example 3.7. Consider approximating the integral

Ipxq “

ż π{2

0
e´x sin

2ptq dt as x ÝÑ 8.

with φptq “ ´ sin2ptq. Let s “ ´φptq “ sin2ptq, then

ds “ 2 sinptq cosptqdt “ 2 sinptq

b

1´ sin2ptqdt “ 2
a

sp1´ sqdt.

Thus, Ipxq transforms into:

Ipxq “

ż 1

0

e´xs

2
a

sp1´ sq
ds “

1

2

ż 1

0
F psqe´xs ds,
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where F psq “ 1{
a

sp1´ sq. From the generalised binomial theorem,

1
a

sp1´ sq
“

1
?
s

ˆ

1
?

1´ s

˙

“
1
?
s

8
ÿ

n“0

Γ
`

n` 1
2

˘

n!Γ
`

1
2

˘ sn, for |s| ă 1.

It follows from Watson’s lemma (with α “ ´1{2, β “ 1) that:

Ipxq „
1

2

8
ÿ

n“0

˜

Γ
`

n` 1
2

˘

n!Γ
`

1
2

˘

¸˜

Γ
`

´1
2 ` n` 1

˘

xn`1{2

¸

“
1

2

8
ÿ

n“0

rΓ
`

n` 1
2

˘

s2

n!Γ
`

1
2

˘

xn`1{2
as x ÝÑ 8.

Laplace’s Method for Integrals with Movable Maxima

Example 3.8. Consider the Laplace transform of fptq “ e´1{t:

Lpe´1{tqpxq “
ż 8

0
e´1{te´xt dt “

ż 8

0
e´

1
t
´xt dt.

Observe that e´1{t vanishes exponentially fast at t “ 0, the maximum of φptq “ ´t. If we apply
Watson’s lemma, we obtain the asymptotic series expansion

Lpe´1{tqpxq „ 0 as x ÝÑ 8,

since the asymptotic power series of e´1{t is 0 as t ÝÑ 0`. In this case, Watson’s lemma does not
determine the behaviour of Lpe´1{tqpxq since Lpe´1{tqpxq is smaller than any power of x as x ÝÑ 8.

To find the correct behaviour of Lpe´1{tqpxq, we first determine the location of the maximum of
the integrand e´1{t´xt, which occurs when:

0 “
d

dt

ˆ

´
1

t
´ xt

˙

“
1

t2
´ x ùñ t “

1
?
x
.

Such a maximum is called a movable maximum because its location depends on the parameter x. To
deal with this, we make a change of variable to transform the movable maximum to a fixed maximum.

Let t “
s
?
x

, then

Lpe´1{tqpxq “
ż 8

0
e´

1
t
´xt dt “

1
?
x

ż 8

0
e´
?
xps` 1

s q ds

Example 3.9. Consider approximating the Gamma function

Γpxq “

ż 8

0
tx´1e´t dt as x ÝÑ 8.

This is a Laplace integral, with fptq “ e´t{t and φptq “ ln t. Laplace’s method is not immediately
applicable here since

max
tPr0,8q

φptq “ 8,

and the maximum occurs as t ÝÑ 8 where fptq is exponentially small. Neglecting the term 1{t which
vanishes algebraically as t ÝÑ 8, we determine the location of the maximum of txe´t, which occurs
when:

0 “
d

dt
ptxe´tq “ txp´e´tq ` pxtx´1qe´t ùñ tx “ xtx´1 ùñ t “ x.
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Since this is a movable maximum, we make a change of variable t “ sx and obtain:

Γpxq “

ż 8

0
tx´1e´t dt “ xx

ż 8

0
sx´1e´sx ds

“ xx
ż 8

0

ex ln se´xs

s
ds

“ xx
ż 8

0

expln s´sq

s
ds.
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4 Problems

1. Show that if
fpxq „ apx´ x0q

´b as x ÝÑ x`0 ,

then
ż x

x0

fpxq dx „
a

1´ b
px´ x0q

1´b as x ÝÑ x`0 if b ă 1.

Solution:

2. (a) Give an example of an asymptotic relation f „ g as x ÝÑ 8 that cannot be exponentiated,
i.e. efpxq „ egpxq as x ÝÑ 8 is false.

Solution:

(b) Show that if fpxq ´ gpxq ! 1 as x ÝÑ 8, then efpxq „ egpxq as x ÝÑ 8.

Solution:

3. Find the leading behaviour as x ÝÑ 0` of the following integrals.

(a)

ż 1

0
e´x{t dt;

Solution:

(b)

ż 1

x
cospxtq dt;

Solution:

(c)

ż 1{x

0
e´t

2
dt;

Solution:

(d)

ż 8

1

cospxtq

t
dt.

Solution:

4. Consider

Ipxq “

ż 8

0

e´t

1` xet2
dt.

(a) Show that Ipxq ´ 1 „ ´ exp
`?
´ lnx

˘

as x ÝÑ 0`.

Solution:

(b) Find the full asymptotic expansion of Ipxq as x ÝÑ 0`.



4 PROBLEMS 19

Solution:

5. Use Laplace’s method to determine the leading behaviour of the following integrals.

(a)

ż π{2

0

?
te´x sin

4 t dt as x ÝÑ 8;

Solution:

(b)

ż 1

0

?
tante´xt

2
dt as x ÝÑ 8.

Solution:

6. Use Watson’s lemma to obtain an asymptotic expansion of the exponential integral

E1pxq “

ż 8

x

e´t

t
dt.

Hint: Show that

E1pxq “ e´x
ż 8

0

e´xt

1` t
dt.

Solution:

7. The modified Bessel function Inpxq has the integral representation

Inpxq “
1

π

ż π

0
ex cos θ cospnθq dθ.

Show that Inpxq „
ex

?
2πx

.

Solution:
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